Higher Order Quasi--Monte Carlo Integration for Holomorphic, Parametric Operator Equations
نویسندگان
چکیده
منابع مشابه
Computational Higher Order Quasi-Monte Carlo Integration
The efficient construction of higher-order interlaced polynomial lattice rules introduced recently in [6] is considered and the computational performance of these higher-order QMC rules is investigated on a suite of parametric, highdimensional test integrand functions. After reviewing the principles of their construction by the “fast component-by-component” (CBC) algorithm due to Nuyens and Coo...
متن کاملMonte-Carlo and Quasi-Monte-Carlo Methods for Numerical Integration
We consider the problem of numerical integration in dimension s, with eventually large s; the usual rules need a very huge number of nodes with increasing dimension to obtain some accuracy, say an error bound less than 10−2; this phenomenon is called ”the curse of dimensionality”; to overcome it, two kind of methods have been developped: the so-called Monte-Carlo and Quasi-Monte-Carlo methods. ...
متن کاملMultilevel higher order Quasi-Monte Carlo Bayesian Estimation
We propose and analyze deterministic multilevel approximations for Bayesian inversion of operator equations with uncertain distributed parameters, subject to additive gaussian measurement data. The algorithms use a multilevel (ML) approach based on deterministic, higher order quasi-Monte Carlo (HoQMC) quadrature for approximating the high-dimensional expectations, which arise in the Bayesian es...
متن کاملHigher order quasi-Monte Carlo methods: A comparison
Quasi-Monte Carlo is usually employed to speed up the convergence of Monte Carlo in approximating multivariate integrals. While convergence of the Monte Carlo method is O(N−1/2), that of plain quasi-Monte Carlo can achieve O(N−1). Several methods exist to increase its convergence to O(N−α ), α > 1, if the integrand has enough smoothness. We discuss two methods: lattice rules with periodization ...
متن کاملOn quasi-Monte Carlo rules achieving higher order convergence
Quasi-Monte Carlo rules which can achieve arbitrarily high order of convergence have been introduced recently. The construction is based on digital nets and the analysis of the integration error uses Walsh functions. Various approaches have been used to show arbitrarily high convergence. In this paper we explain the ideas behind higher order quasi-Monte Carlo rules by leaving out most of the te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM/ASA Journal on Uncertainty Quantification
سال: 2016
ISSN: 2166-2525
DOI: 10.1137/140985913